

NTSB National Transportation Safety Board

Presentation to:

San Bernardino City Unified School District

Name: Christopher A. Hart

Date: January 15, 2014

Collaboration – A **Very Powerful Tool for Improvement: Aviation Success** Transferable to **Education?**

NTSB 101

- Independent federal agency, investigate transportation mishaps, all modes
- Determine probable cause(s) and make recommendations to prevent recurrences
- Primary product: Safety recommendations
 - Favorable response > 80%
- SINGLE FOCUS IS SAFETY
- Independence
 - Political: Findings and recommendations based upon evidence rather than politics
 - Functional: No "dog in the fight"

Ingredients of a Quality Process

- Reliability: Minimal likelihood of a process BREAKDOWN
- Safety: No INJURY or DAMAGE
- Productivity: Greatest OUTPUT for least INPUT

Challenge

How to improve

RELIABILITY, SAFETY, and PRODUCTIVITY

at the

SAME TIME???

Particularly when conventional wisdom is that improvements that improve safety usually reduce productivity, and vice-versa

Solution: Collaboration

Everyone who is

involved in the problem

should also be

involved in developing the solution

<u>Outline</u>

- The Challenge
- Collaboration Successes in Aviation
 - Industry Level
 - Manufacturer Level
- Challenges of Prioritization
- Collaboration to Improve Education?

The Challenge in Aviation

More System

Interdependencies

- Large, complex, interactive system
- Often tightly coupled
- Hi-tech components
- Continuous innovation
- Ongoing evolution
- Safety Issues Are More Likely to Involve

Interactions Between Parts of the System

The Solution: System Think

Understanding how a change in one subsystem of a complex system may affect other subsystems within that system

"System Think" via Collaboration

Bringing all parts of a complex system together to collaboratively

- Identify potential issues
- PRIORITIZE the issues
- Develop solutions for the prioritized issues
- Evaluate whether the solutions are
 - Accomplishing the desired result, and
 - Not creating unintended consequences

Major Paradigm Shift

How It Is Now . . .

You are highly trained

and

If you did as trained, you would not make mistakes

SO

You weren't careful enough

SO

How It Should Be . . .

You are human

and

Humans make mistakes

SO

Let's also explore why the system allowed, or failed to accommodate, your mistake

and

You should be PUNISHED! Let's IMPROVE THE SYSTEM!

The Health Care Industry

To Err Is Human:

Building a Safer Health System

"The focus must shift from blaming individuals for past errors to a focus on preventing future errors by designing safety into the system."

Institute of Medicine, Committee on Quality of Health Care in America, 1999

Major Source of Information: Hands-On "Front-Line" Employees

"We Knew About That Problem"

(and we knew it might hurt someone sooner or later)

From Data to Information

Tools and processes to convert large quantities of data into useful information

Data Sources

Info from front line staff and other sources

Smart Decisions

- Identify issues
- PRIORITIZE!!!
- Develop solutions
- Evaluate interventions

Commercial Aviation Safety Team (CAST)

Engage All Participants In Identifying Problems and Developing and Evaluating Remedies

- Airlines
- Manufacturers
 - With the systemwide effort
 - With their own end users
- Air Traffic Organizations
- Labor
 - Pilots
 - Mechanics
 - Air traffic controllers
- Regulator(s) [Query: Investigator(s)?]

Aviation Success Story

65% Decrease in Fatal Accident Rate, 1997 - 2007

largely because of

System Think

fueled by

Proactive Safety
Information Programs

P.S. Aviation was already considered *VERY SAFE* in 1997!!

Another Major Paradigm Shift

- Old: The regulator identifies a problem, develops solutions
 - Industry skeptical of regulator's understanding of the problem
 - Industry fights regulator's solution and/or implements it begrudgingly
- New: Collaborative "System Think"
 - All participants involved in identifying problem
 - Industry "buy-in" re interventions because everyone had input, everyone's interests considered
 - Prompt and willing implementation
 - Interventions evaluated . . . and tweaked as needed
 - Solutions probably more effective and efficient
 - Unintended consequences much less likely

Challenges of Collaboration

- Human nature: "I'm doing great . . . the problem is everyone else"
- Participants may have competing interests, e.g.,
 - Labor/management issues
 - May be potential co-defendants
- Regulator probably not welcome
- Not a democracy
 - Regulator must regulate
- Requires all to be willing, in their enlightened selfinterest, to leave their "comfort zone" and think of the System

Actually a Win-Win-Win

P.S. Collaboration also significantly reduces the likelihood of unintended consequences!

Collaboration at Other Levels

- Collaboration can be successful at any macro/micro level, including
 - Entire industry
 - Company (some or all)
 - Type of activity
 - Facility
 - Team
- Persistent process challenge?

Manufacturer Level "System Think"

Aircraft manufacturers are increasingly seeking input, from the earliest phases of the design process, from

- Pilots

(*User* Friendly)

- Mechanics

(*Maintenance* Friendly)

- Air Traffic Services

(System Friendly)

Next Challenge: Prioritization

You will probably identify *more potential* concerns than you have resources to address

```
Cost to address potential concern 1
+ Cost to address potential concern 2
+ Cost to address potential concern 3
+ . . .
+ . . .
+ Cost to address potential concern "n"

Total: More than available resources
```

So . . . how to decide, *BEFORE* a mishap (i.e., *WITHOUT the benefit of 20-20 hindsight)*, what to fix first?

Factors to Consider

- Severity and likelihood past, present, and future
- Cost of remedy
- Synergies of concern with other concerns?
- Synergies of remedy with other concerns/remedies?
- Other?

– Process question: First in, first out?

Is Prioritization Working?

- Process is never perfect
 - Depends heavily upon predictions and judgment calls
 - Particularly difficult in high-tech or otherwise continually changing operations
- Success may be difficult to measure
 - Prioritization process may help prevent the worst or most frequent adverse events, but not necessarily every adverse event
 - Thus, when adverse events keep happening, how to determine if the process is working?

Examples of Prioritization Failures?

How many *other pressing issues* (if any) were being addressed when:

- NASA responded inadequately to previous events of separated foam that struck the orbiter during launch
- Concorde manufacturer and operators responded inadequately to previous tire disintegrations during takeoff
- Ford and Firestone responded inadequately to previous tire failures and rollovers in Ford Explorers
- The intelligence community responded inadequately to reports about people who wanted to learn to fly – but not how to land – in an airline flight simulator

Missing Element – The Harsh Glare of Hindsight

So . . . Collaboration for Education?

- Select troublesome area
 - Nagging problem for many years
 - Many interventions have been tried, not successful
 - Likelihood that problems are systemic, not just people
 - Effort to address the system problems
 - Less defensiveness because not focused on single event
- Select collaborative corrective action group
 - All who have a hand in the process
 - Manufacturers?
 - Regulators?
 - Students?

Thank You!!!

Questions?